Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.658
1.
PLoS One ; 19(5): e0303060, 2024.
Article En | MEDLINE | ID: mdl-38723008

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Diet, High-Fat , Fructose , Hyperglycemia , Inflammation , Oxidative Stress , Rutin , Vitamin A , Animals , Rutin/pharmacology , Oxidative Stress/drug effects , Fructose/adverse effects , Rats , Diet, High-Fat/adverse effects , Vitamin A/pharmacology , Vitamin A/metabolism , Inflammation/metabolism , Inflammation/drug therapy , Inflammation/pathology , Male , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Hyperglycemia/chemically induced , Molecular Docking Simulation , Rats, Wistar , Disease Models, Animal , Glycosylation/drug effects , Metformin/pharmacology , Glycated Hemoglobin/metabolism , NF-kappa B/metabolism , Hexokinase/metabolism , Catalase/metabolism
2.
Cancer Immunol Immunother ; 73(7): 122, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714539

Neuroblastoma (NB) is the most common and deadliest extracranial solid tumor in children. Targeting tumor-associated macrophages (TAMs) is a strategy for attenuating tumor-promoting states. The crosstalk between cancer cells and TAMs plays a pivotal role in mediating tumor progression in NB. The overexpression of Hexokinase-3 (HK3), a pivotal enzyme in glucose metabolism, has been associated with poor prognosis in NB patients. Furthermore, it correlates with the infiltration of M2-like macrophages within NB tumors, indicating its significant involvement in tumor progression. Therefore, HK3 not only directly regulates the malignant biological behaviors of tumor cells, such as proliferation, migration, and invasion, but also recruits and polarizes M2-like macrophages through the PI3K/AKT-CXCL14 axis in neuroblastoma. The secretion of lactate and histone lactylation alterations within tumor cells accompanies this interaction. Additionally, elevated expression of HK3 in M2-TAMs was found at the same time. Modulating HK3 within M2-TAMs alters the biological behavior of tumor cells, as demonstrated by our in vitro studies. This study highlights the pivotal role of HK3 in the progression of NB malignancy and its intricate regulatory network with M2-TAMs. It establishes HK3 as a promising dual-functional biomarker and therapeutic target in combating neuroblastoma.


Hexokinase , Neuroblastoma , Tumor-Associated Macrophages , Neuroblastoma/metabolism , Neuroblastoma/pathology , Humans , Hexokinase/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Cell Proliferation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Movement , Chemokines, CXC/metabolism , Animals , Tumor Microenvironment/immunology
3.
Oncol Res ; 32(5): 899-910, 2024.
Article En | MEDLINE | ID: mdl-38686047

Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis. Since there is no permanent therapy for this condition, it is necessary to develop a cure. Therefore, this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A (HYSA) in osteosarcoma cell lines (MG63). In this investigational study, MG63 cells were utilized. Microarray experiments, quantitative polymerase chain reaction (qPCR), immunofluorescent staining, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption, lactate production, and ATP levels, proliferation assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, and Western blot were performed. In MG63 cells, HYSA lowered cell proliferation and metastasis rates, suppressed EDU cell number, and enhanced caspase-3/9 activity levels. HYSA reduced the Warburg effect and induced ferroptosis (FPT) in MG63 cells. Inhibiting ferroptosis diminished HYSA's anti-cancer activities in MG63 cells. The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA's anti-cancer activities in MG63 cells. HIF-1α is one target spot for HYSA in a model of osteosarcoma cancer (OC). HYSA altered HIF-1α's thermophoretic activity; following binding with HYSA, HIF-1α's melting point increased from ~55°C to ~60°C. HYSA significantly enhanced the thermal stability of exogenous WT HIF-1α while not affecting Mut HIF-1α, suggesting that ARG-311, GLY-312, GLN-347, and GLN-387 may be involved in the interaction between HIF-1α and HYSA. Conclusively, our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway. HYSA is a possible therapeutic option for OC or other cancers.


Bone Neoplasms , Cell Proliferation , Chalcone , Ferroptosis , Osteosarcoma , Quinones , Humans , Amino Acid Transport System y+/drug effects , Amino Acid Transport System y+/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Chalcone/pharmacology , Chalcone/analogs & derivatives , Ferroptosis/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Osteosarcoma/metabolism , Osteosarcoma/pathology , Osteosarcoma/drug therapy , Quinones/pharmacology , Signal Transduction/drug effects , Hexokinase/drug effects , Hexokinase/metabolism
4.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38673950

Demyelinating Charcot-Marie-Tooth 4G (CMT4G) results from a recessive mutation in the 5'UTR region of the Hexokinase 1 (HK1) gene. HK participates in mitochondrial calcium homeostasis by binding to the Voltage-Dependent Anion Channel (VDAC), through its N-terminal porin-binding domain. Our hypothesis is that CMT4G mutation results in a broken interaction between mutant HK1 and VDAC, disturbing mitochondrial calcium homeostasis. We studied a cohort of 25 CMT4G patients recruited in the French gypsy population. The disease was characterized by a childhood onset, an intermediate demyelinating pattern, and a significant phenotype leading to becoming wheelchair-bound by the fifth decade of life. Co-IP and PLA studies indicated a strong decreased interaction between VDAC and HK1 in the patients' PBMCs and sural nerve. We observed that either wild-type HK1 expression or a peptide comprising the 15 aa of the N-terminal wild-type HK1 administration decreased mitochondrial calcium release in HEK293 cells. However, mutated CMT4G HK1 or the 15 aa of the mutated HK1 was unable to block mitochondrial calcium release. Taken together, these data show that the CMT4G-induced modification of the HK1 N-terminus disrupts HK1-VDAC interaction. This alters mitochondrial calcium buffering that has been shown to be critical for myelin sheath maintenance.


5' Untranslated Regions , Calcium , Charcot-Marie-Tooth Disease , Hexokinase , Mitochondria , Mutation , Voltage-Dependent Anion Channel 1 , Humans , Hexokinase/genetics , Hexokinase/metabolism , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/metabolism , Calcium/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Female , HEK293 Cells , Male , 5' Untranslated Regions/genetics , Voltage-Dependent Anion Channel 1/metabolism , Voltage-Dependent Anion Channel 1/genetics , Adult , Protein Binding , Adolescent , Middle Aged , Child , Young Adult
5.
Article En | MEDLINE | ID: mdl-38583741

The white shrimp Penaeus (Litopenaeus) vannamei is the most cultivated shrimp worldwide. Compared to other shrimp species, it has higher resistance to adverse conditions. During hypoxia, the shrimp reduces oxygen consumption and adjusts energy metabolism via anaerobic glycolysis, among other strategies. Hexokinase (HK) is the first enzyme of glycolysis and a key regulation point. In mammals and other vertebrates, there are several tissue-specific HK isoforms with differences in expression and enzyme activity. In contrast, crustacean HKs have been relatively little studied. We studied the P. vannamei HK isoforms during hypoxia and reoxygenation. We cloned two HK1 sequences named HK1-long (1455 bp) and HK1-short (1302 bp), and one HK2 (1344 bp). In normoxia, total HK1 expression is higher in hepatopancreas, while HK2 is higher in gills. Severe hypoxia (1 mg/L of DO) after 12 h exposure and 1 h of reoxygenation increased HK1 expression in both organs, but HK2 expression changed differentially. In hepatopancreas, HK2 expression increased in 6 and 12 h of hypoxia but diminished to normoxia levels after reoxygenation. In gills, HK2 expression decreased after 12 h of hypoxia. HK activity increased in hepatopancreas after 12 h hypoxia, opposite to gills. These results indicate that shrimp HK isoforms respond to hypoxia and reoxygenation in a tissue-specific manner. Intracellular glucose levels did not change in any case, showing the shrimp ability to maintain glucose homeostasis during hypoxia.


Penaeidae , Animals , Penaeidae/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Amino Acid Sequence , Hypoxia/metabolism , Oxygen/metabolism , Protein Isoforms/metabolism , Glucose/metabolism , Hepatopancreas/metabolism , Mammals/metabolism
6.
Biochemistry (Mosc) ; 89(2): 299-312, 2024 Feb.
Article En | MEDLINE | ID: mdl-38622097

A decrease in muscle mass and its functionality (strength, endurance, and insulin sensitivity) is one of the integral signs of aging. One of the triggers of aging is an increase in the production of mitochondrial reactive oxygen species. Our study was the first to examine age-dependent changes in the production of mitochondrial reactive oxygen species related to a decrease in the proportion of mitochondria-associated hexokinase-2 in human skeletal muscle. For this purpose, a biopsy was taken from m. vastus lateralis in 10 young healthy volunteers and 70 patients (26-85 years old) with long-term primary arthrosis of the knee/hip joint. It turned out that aging (comparing different groups of patients), in contrast to inactivity/chronic inflammation (comparing young healthy people and young patients), causes a pronounced increase in peroxide production by isolated mitochondria. This correlated with the age-dependent distribution of hexokinase-2 between mitochondrial and cytosolic fractions, a decrease in the rate of coupled respiration of isolated mitochondria and respiration when stimulated with glucose (a hexokinase substrate). It is discussed that these changes may be caused by an age-dependent decrease in the content of cardiolipin, a potential regulator of the mitochondrial microcompartment containing hexokinase. The results obtained contribute to a deeper understanding of age-related pathogenetic processes in skeletal muscles and open prospects for the search for pharmacological/physiological approaches to the correction of these pathologies.


Hexokinase , Mitochondria , Humans , Adult , Middle Aged , Aged , Aged, 80 and over , Reactive Oxygen Species/metabolism , Hexokinase/metabolism , Muscle, Skeletal/metabolism , Aging/physiology , Mitochondria, Muscle/metabolism
7.
Cell Signal ; 119: 111183, 2024 Jul.
Article En | MEDLINE | ID: mdl-38636768

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide, with Hepatitis B virus (HBV) infection being the leading cause. This study aims to investigate the role of HBV in HCC pathogenesis involving glucose metabolism. Long non-coding RNA (lncRNA) OIP5-AS1 was significantly downregulated in HBV-positive HCC patients, and its low expression indicated a poor prognosis. This lncRNA was primarily localized in the cytoplasm, acting as a tumor suppressor. HBV protein X (HBx) repressed OIP5-AS1 expression by inhibiting a ligand-activated transcriptional factor peroxisome proliferator-activated receptor α (PPARα). Furthermore, mechanistic studies revealed that OIP5-AS1 inhibited tumor growth by suppressing Hexokinase domain component 1 (HKDC1)-mediated glycolysis. The expression of HKDC1 could be enhanced by transcriptional factor sterol regulatory element-binding protein 1 (SREBP1). OIP5-AS1 facilitated the ubiquitination and degradation of SREBP1 to suppress HKDC1 transcription, which inhibited glycolysis. The results suggest that lncRNA OIP5-AS1 plays an anti-oncogenic role in HBV-positive HCC via the HBx/OIP5-AS1/HKDC1 axis, providing a promising diagnostic marker and therapeutic target for HBV-positive HCC patients.


Carcinoma, Hepatocellular , Gene Expression Regulation, Neoplastic , Glycolysis , Hexokinase , Liver Neoplasms , RNA, Long Noncoding , Trans-Activators , Viral Regulatory and Accessory Proteins , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/virology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Glycolysis/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Hexokinase/metabolism , Hexokinase/genetics , Animals , Hepatitis B virus , Male , Cell Line, Tumor , Down-Regulation , Mice , Mice, Nude , Female , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Mice, Inbred BALB C , PPAR alpha/metabolism , PPAR alpha/genetics
8.
Pathol Res Pract ; 257: 155281, 2024 May.
Article En | MEDLINE | ID: mdl-38669868

BACKGROUND: Colorectal cancer (CRC) theratened thousands of people every year. Emerging evidences suggested that circular RNAs (circRNAs) were involved in CRC malignancies. However, the underlying mechanisms have yet not been revealed. METHODS: Quantitative real-time PCR (qRT-PCR) was used to determine the expression of circ_0087862 and microRNA-512-3p (miR-512-3p). Western blot was performed to measure the protein expression of hexokinase 2 (HK2), B-cell lymphoma-2 (Bcl-2), BCL2-associated X (Bax) and BCL2 antagonist/killer 1 (Bak). Moreover, 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assay were employed to assess CRC cell proliferation. Also, migration/invasion abilities and apoptosis rates were investigated by transwell assay and flow cytometry. Glucose consumption, lactate production and ATP production were detected using the corresponding kits. Dual-luciferase reporter analysis and RNA immunoprecipitation (RIP) experiments were utilized to analyze the target association of miR-512-3p and circ_0087862 or HK2. Finally, xenograft assay was carried out to analyze the function of circ_0087862 in tumor growth in vivo. RESULTS: Circ_0087862 expression was elevated in CRC tissues and cells. Circ_0087862 silencing repressed cell viabilities, proliferation, migration/invasion and glycolysis, and reinforced cell apoptosis. However, HK2 could weaken these impacts. Additionally, miR-512-3p targeted HK2, and circ_0087862 could regulate HK2 expression by miR-512-3p. Furthermore, circ_0087862 silencing decreased CRC cell xenograft tumor growth. CONCLUSION: Collectively, our data suggested that circ_0087862 knockdown impeded cell viabilities, proliferation, and glycolysis, and contributed to cell apoptosis in CRC, indicating circ_0087862 as a promising tumor promoter.


Apoptosis , Cell Proliferation , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Hexokinase , MicroRNAs , RNA, Circular , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Animals , Cell Proliferation/genetics , Mice , Apoptosis/genetics , Gene Expression Regulation, Neoplastic/genetics , Disease Progression , Mice, Nude , Cell Movement/genetics , Cell Line, Tumor , Male , Female
9.
BMC Med Genomics ; 17(1): 112, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685060

BACKGROUND: The Warburg effect is a hallmark characteristic of colorectal cancer (CRC). Despite extensive research, the role of long non-coding RNAs (lncRNAs) in influencing the Warburg effect remains incompletely understood. Our study aims to identify lncRNAs that may modulate the Warburg effect by functioning as competing endogenous RNAs (ceRNAs). METHODS: Utilizing bioinformatics approaches, we extracted glycolysis-associated gene data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and identified 101 glycolysis-related lncRNAs in CRC. We employed Univariable Cox regression, Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, and Multivariable Cox regression to develop a prognostic model comprising four glycolysis-linked lncRNAs. We then constructed a prognostic nomogram integrating this lncRNA model with other relevant clinical parameters. RESULTS: The prognostic efficacy of our four-lncRNA signature and its associated nomogram was validated in both training and validation cohorts. Functional assays demonstrated significant glycolysis and hexokinase II (HK2) inhibition following the silencing of RUNDC3A - AS1, a key lncRNA in our prognostic signature, highlighting its regulatory importance in the Warburg effect. CONCLUSIONS: Our research illuminates the critical role of glycolysis-centric lncRNAs in CRC. The developed prognostic model and nomogram underscore the pivotal prognostic and regulatory significance of the lncRNA RUNDC3A - AS1 in the Warburg effect in colorectal cancer.


Colorectal Neoplasms , Disease Progression , Glycolysis , RNA, Long Noncoding , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Glycolysis/genetics , Prognosis , Hexokinase/genetics , Hexokinase/metabolism , Female , Gene Expression Regulation, Neoplastic , Male , Nomograms , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling
10.
Biochem Biophys Res Commun ; 706: 149759, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38484574

BACKGROUND: Sepsis is a life-threatening global disease with a significant impact on human health. Acute lung injury (ALI) has been identified as one of the primary causes of mortality in septic patients. This study aimed to identify candidate genes involved in sepsis-induced ALI through a comprehensive approach combining bioinformatics analysis and experimental validation. METHODS: The datasets GSE65682 and GSE32707 obtained from the Gene Expression Omnibus database were merged to screen for sepsis-induced ALI related differentially expressed genes (DEGs). Functional enrichment and immune infiltration analyses were conducted on DGEs, with the construction of protein-protein interaction (PPI) networks to identify hub genes. In vitro and in vivo models of sepsis-induced ALI were used to study the expression and function of hexokinase 3 (HK3) using various techniques including Western blot, real-time PCR, immunohistochemistry, immunofluorescence, Cell Counting Kit-8, Enzyme-linked immunosorbent assay, and flow cytometry. RESULTS: The results of bioinformatics analysis have identified HK3, MMP9, and S100A8 as hub genes with diagnostic and prognostic significance for sepsis-induced ALI. The HK3 has profound effects on sepsis-induced ALI and exhibits a correlation with immune regulation. Experimental results showed increased HK3 expression in lung tissue of septic mice, particularly in bronchial and alveolar epithelial cells. In vitro studies demonstrated upregulation of HK3 in lipopolysaccharide (LPS)-stimulated lung epithelial cells, with cytoplasmic localization around the nucleus. Interestingly, following the knockdown of HK3 expression, lung epithelial cells exhibited a significant decrease in proliferation activity and glycolytic flux, accompanied by an increase in cellular inflammatory response, oxidative stress, and cell apoptosis. CONCLUSIONS: It was observed for the first time that HK3 plays a crucial role in the progression of sepsis-induced ALI and may be a valuable target for immunomodulation and therapy.Bioinformatics analysis identified HK3, MMP9, and S100A8 as hub genes with diagnostic and prognostic relevance in sepsis-induced ALI. Experimental findings showed increased HK3 expression in the lung tissue of septic mice, particularly in bronchial and alveolar epithelial cells. In vitro experiments demonstrated increased HK3 levels in lung epithelial cells stimulated with LPS, with cytoplasmic localization near the nucleus. Knockdown of HK3 expression resulted in decreased proliferation activity and glycolytic flux, increased inflammatory response, oxidative stress, and cell apoptosis in lung epithelial cells.


Acute Lung Injury , Hexokinase , Sepsis , Animals , Humans , Mice , Acute Lung Injury/metabolism , Hexokinase/metabolism , Lipopolysaccharides/pharmacology , Lung/metabolism , Matrix Metalloproteinase 9 , Prognosis , Sepsis/metabolism
11.
Mar Environ Res ; 197: 106467, 2024 May.
Article En | MEDLINE | ID: mdl-38520956

Marine hypoxia poses a significant challenge in the contemporary marine environment. The horseshoe crab, an ancient benthic marine organism, is confronted with the potential threat of species extinction due to hypoxia, making it an ideal candidate for studying hypoxia tolerance mechanisms. In this experiment, juvenile Tachypleus tridentatus were subjected to a 21-day trial at DO:2 mg/L (hypoxia) and DO:6 mg/L conditions. The experimental timeline included a 14-day exposure phase followed by a 7-day recovery period. Sampling occurred on days 0, 7, 14, and 21, where the period from day 14 to day 21 corresponds to seven days of recuperation. Several enzymatic activities of important proteins throughout this investigation were evaluated, such as succinate dehydrogenase (SDH), phosphofructokinase (PFK), hexokinase (HK), lactate dehydrogenase (LDH), and pyruvate kinase (PK). Concurrently, the relative expression of hexokinase-1 (HK), hypoxia-inducible factor 1-alpha inhibitor (FIH), and hypoxia-inducible factor 1-alpha (HIF-1α), pyruvate dehydrogenase phosphatase (PDH), succinate dehydrogenase assembly factor 4 (SDH), and Glucose-6-phosphatase (G6Pase) were also investigated. These analyses aimed to elucidate alterations in the hypoxia signaling pathway and respiratory energy metabolism. It is revealed that juvenile T. tridentatus initiated the HIF pathway under hypoxic conditions, resulting in an upregulation of HIF-1α and FIH-1 gene expression, which in turn, influenced a shift in metabolic patterns. Particularly, the activity of glycolysis-related enzymes was promoted significantly, including PK, HK, PKF, LDH, and the related HK gene. In contrast, enzymes linked to aerobic respiration, PDH, and SDH, as well as the related PDH and SDH genes, displayed down-regulation, signifying a transition from aerobic to anaerobic metabolism. Additionally, the activity of gluconeogenesis-related enzymes such as PK and G6Pase gene expression were significantly elevated, indicating the activation of gluconeogenesis and glycogenolysis pathways. Consequently, juvenile T. tridentatus demonstrated an adaptive response to hypoxic conditions, marked by changes in respiratory energy metabolism modes and the activation of hypoxia signaling pathways.


Horseshoe Crabs , Succinate Dehydrogenase , Animals , Horseshoe Crabs/genetics , Horseshoe Crabs/metabolism , Succinate Dehydrogenase/metabolism , Hexokinase/metabolism , Hypoxia/metabolism , Signal Transduction , Glucose/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
12.
FASEB J ; 38(6): e23556, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38498348

PARP-1 over-activation results in cell death via excessive PAR generation in different cell types, including neurons following brain ischemia. Glycolysis, mitochondrial function, and redox balance are key cellular processes altered in brain ischemia. Studies show that PAR generated after PARP-1 over-activation can bind hexokinase-1 (HK-1) and result in glycolytic defects and subsequent mitochondrial dysfunction. HK-1 is the neuronal hexokinase and catalyzes the first reaction of glycolysis, converting glucose to glucose-6-phosphate (G6P), a common substrate for glycolysis, and the pentose phosphate pathway (PPP). PPP is critical in maintaining NADPH and GSH levels via G6P dehydrogenase activity. Therefore, defects in HK-1 will not only decrease cellular bioenergetics but will also cause redox imbalance due to the depletion of GSH. In brain ischemia, whether PAR-mediated inhibition of HK-1 results in bioenergetics defects and redox imbalance is not known. We used oxygen-glucose deprivation (OGD) in mouse cortical neurons to mimic brain ischemia in neuronal cultures and observed that PARP-1 activation via PAR formation alters glycolysis, mitochondrial function, and redox homeostasis in neurons. We used pharmacological inhibition of PARP-1 and adenoviral-mediated overexpression of wild-type HK-1 (wtHK-1) and PAR-binding mutant HK-1 (pbmHK-1). Our data show that PAR inhibition or overexpression of HK-1 significantly improves glycolysis, mitochondrial function, redox homeostasis, and cell survival in mouse cortical neurons exposed to OGD. These results suggest that PAR binding and inhibition of HK-1 during OGD drive bioenergetic defects in neurons due to inhibition of glycolysis and impairment of mitochondrial function.


Brain Ischemia , Oxygen , Mice , Animals , Oxygen/metabolism , Poly Adenosine Diphosphate Ribose/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/metabolism , Glucose/metabolism , Brain Ischemia/metabolism , Glycolysis , Neurons/metabolism , Oxidation-Reduction
13.
Mol Med Rep ; 29(5)2024 05.
Article En | MEDLINE | ID: mdl-38516767

Acute lung injury (ALI) is an acute inflammatory lung disease associated with both innate and adaptive immune responses. Hexokinase 2 (HK2) is specifically highly expressed in numerous types of inflammation­related diseases and models. In the present study in vitro and in vivo effects of targeted degradation of HK2 on ALI were explored. The degradation of HK2 by the targeting peptide TAT (transactivator of transcription protein of HIV­1)­ataxin 1 (ATXN1)­chaperone­mediated autophagy­targeting motif (CTM) was demonstrated by ELISA and western blotting in vitro and in vivo. The inhibitory effects of TAT­ATXN1­CTM on lipopolysaccharide (LPS)­induced inflammatory responses were examined using ELISAs. The therapeutic effects of TAT­ATXN1­CTM on LPS­induced ALI were examined via histological examination and ELISAs in mice. 10 µM TAT­ATXN1­CTM administration decreased HK2 protein expression and the secretion of proinflammatory cytokines (TNF­α and IL­1ß) without altering HK2 mRNA expression in LPS­treated both in vitro and in vivo, while pathological lung tissue damage and the accumulation of leukocytes, neutrophils, macrophages and lymphocytes in ALI were also significantly suppressed by 10 µM TAT­ATXN1­CTM treatment. TAT­ATXN1­CTM exhibited anti­inflammatory activity in vitro and decreased the severity of ALI in vivo. HK2 degradation may represent a novel therapeutic approach for ALI.


Acute Lung Injury , Hexokinase , Animals , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Hexokinase/antagonists & inhibitors , Hexokinase/metabolism , Lipopolysaccharides/adverse effects , Lung/pathology
14.
J Mol Histol ; 55(2): 187-199, 2024 Apr.
Article En | MEDLINE | ID: mdl-38478190

Polycystic ovary syndrome (PCOS) is an endocrine disease, and its pathogenesis and treatment are still unclear. Hexokinase domain component 1 (HKDC1) participates in regulating mitochondrial function and glycolysis. However, its role in PCOS development remains unrevealed. Here, female C57BL/6 mice were intraperitoneally injected with dehydroepiandrosterone (DHEA; 60 mg/kg body weight) to establish an in vivo model of PCOS. In vitro, KGN cells, a human ovarian granular cell line, were used to explore the potential mechanisms. DHEA-treated mice exhibited a disrupted estrus cycle, abnormal hormone levels, and insulin resistance. Dysfunction in mitochondria and glycolysis is the main reason for PCOS-related growth inhibition of ovarian granular cells. Here, we found that the structure of mitochondria was impaired, less ATP was generated and more mitochondrial Reactive Oxygen Species were produced in HKDC1-silenced KGN cells. Moreover, HKDC1 knockdown inhibited glucose consumption and decreased the production of glucose-6-phosphate and lactic acid. Conclusively, HKDC1 protects ovarian granulocyte cells from DHEA-related damage at least partly by preserving mitochondrial function and maintaining glycolysis.


Polycystic Ovary Syndrome , Female , Mice , Humans , Animals , Polycystic Ovary Syndrome/metabolism , Hexokinase/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Dehydroepiandrosterone/pharmacology , Dehydroepiandrosterone/metabolism , Granulocytes/metabolism , Granulocytes/pathology
15.
PLoS One ; 19(3): e0300150, 2024.
Article En | MEDLINE | ID: mdl-38457438

During hypoxia accumulation of lactate may be a key factor in acidosis-induced tissue damage. Binding of hexokinase (HK) to the outer membrane of mitochondria may have a protective effect under these conditions. We have investigated the regulation of lactate metabolism by hexokinases (HKs), using HEK293 cells in which the endogenous hexokinases have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were also transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown HEK cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. Upon inhibition of the mitochondrial electron transfer chain by NaCN this effect was reversed as a rapid increase in lactate developed which was followed by a slow and sustained increase in the continued presence of the inhibitor. Incubation of the HKI/HKII double knockdown HEK cells with the inhibitor of the malic enzyme, ME1*, blocked the delayed accumulation of lactate evoked by NaCN. With replacement by overexpression of HKI or HKII the accumulation of intracellular lactate evoked by NaCN was prevented. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN) abolished the protective effect of HK expression, with NaCN causing again a sustained increase in lactate. The effect of HK was dependent on HK's catalytic activity and interaction with the mitochondrial outer membrane (MOM). Based on these data we propose that transformation of glucose into G6P by HK activates the pentose phosphate pathway which increases the production of NADPH, which then blocks the activity of the malic enzyme to transform malate into pyruvate and lactate.


Hexokinase , Lactic Acid , Humans , Hexokinase/genetics , Hexokinase/metabolism , Lactic Acid/metabolism , HEK293 Cells , Mitochondria/metabolism , Pyruvates/metabolism
16.
Metabolism ; 155: 155832, 2024 Jun.
Article En | MEDLINE | ID: mdl-38438106

Interleukin (IL)-6 has anti- and pro-inflammatory functions, controlled by IL-6 classic and trans-signaling, respectively. Differences in the downstream signaling mechanism between IL-6 classic and trans-signaling have not been identified. Here, we report that IL-6 activates glycolysis to regulate the inflammatory response. IL-6 regulates glucose metabolism by forming a complex containing signal-transducing activators of transcription 3 (STAT3), hexokinase 2 (HK2), and voltage-dependent anion channel 1 (VDAC1). The IL-6 classic signaling directs glucose flux to oxidative phosphorylation (OxPhos), while IL-6 trans-signaling directs glucose flux to anaerobic glycolysis. Classic IL-6 signaling promotes STAT3 translocation into mitochondria to interact with pyruvate dehydrogenase kinase-1 (PDK1), leading to pyruvate dehydrogenase α (PDHA) dissociation from PDK1. As a result, PDHA is dephosphorylated, and STAT3 is phosphorylated at Ser727. By contrast, IL-6 trans-signaling promotes the interaction of sirtuin 2 (SIRT2) and lactate dehydrogenase A (LDHA), leading to the dissociation of STAT3 from SIRT2. As a result, LDHA is deacetylated, and STAT3 is acetylated and phosphorylated at Tyr705. IL-6 classic signaling promotes the differentiation of regulatory T cells via the PDK1/STAT3/PDHA axis, whereas IL-6 trans-signaling promotes the differentiation of Th17 cells via the SIRT2/STAT3/LDHA axis. Conclusion: IL-6 classic signaling generates anti-inflammatory functions by shifting energy metabolism to OxPhos, while IL-6 trans-signaling generates pro-inflammatory functions by shifting energy metabolism to anaerobic glycolysis.


Glucose , Interleukin-6 , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , STAT3 Transcription Factor , Signal Transduction , Interleukin-6/metabolism , Glucose/metabolism , Animals , Signal Transduction/physiology , STAT3 Transcription Factor/metabolism , Mice , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Glycolysis/physiology , Humans , Inflammation/metabolism , Oxidative Phosphorylation , Hexokinase/metabolism , Phosphorylation , Mice, Inbred C57BL , Metabolic Reprogramming
17.
Eur J Pharmacol ; 967: 176377, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38346469

Poly (ADP-ribose) polymerase-1 (PARP-1) activity significantly increases during cerebral ischemia/reperfusion. PARP-1 is an NAD+-consumption enzyme. PARP-1 hyperactivity causes intracellular NAD+ deficiency and bioenergetic collapse, contributing to neuronal death. Besides, the powerful trigger of PARP-1 causes the catalyzation of poly (ADP-ribosyl)ation (PARylation), a posttranslational modification of proteins. Here, we found that PARP-1 was activated in the ischemic brain tissue during middle-cerebral-artery occlusion and reperfusion (MCAO/R) for 24 h, and PAR accumulated in the neurons in mice. Using immunoprecipitation, Western blotting, liquid chromatography-mass spectrometry, and 3D-modeling analysis, we revealed that the activation of PARP-1 caused PARylation of hexokinase-1 and lactate dehydrogenase-B, which, therefore, caused the inhibition of these enzyme activities and the resulting cell energy metabolism collapse. PARP-1 inhibition significantly reversed the activity of hexokinase and lactate dehydrogenase, decreased infarct volume, and improved neuronal deficiency. PARP-1 inhibitor combined with pyruvate further alleviated MCAO/R-induced ischemic brain injury in mice. As such, we conclude that PARP-1 inhibitor alleviates neuronal death partly by inhibiting the PARylation of metabolic-related enzymes and reversing metabolism reprogramming during cerebral ischemia/reperfusion injury in mice. PARP-1 inhibitor combined with pyruvate might be a promising therapeutic approach against brain ischemia/reperfusion injury.


Brain Ischemia , Reperfusion Injury , Mice , Animals , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerases/metabolism , Poly ADP Ribosylation , Hexokinase/metabolism , NAD/metabolism , Reperfusion Injury/drug therapy , Brain Ischemia/drug therapy , Pyruvates , Lactate Dehydrogenases/metabolism
18.
Cytokine ; 176: 156535, 2024 04.
Article En | MEDLINE | ID: mdl-38325141

Increasing evidence suggests the oncogenic role of missense mutation (AKT1-E17K) of AKT1 gene in meningiomas. Upon investigating the connection between the pro-tumorigenic role of AKT1-E17K and cellular metabolic adaptations, elevated levels of glycolytic enzyme hexokinase 2 (HK2) was observed in meningioma patients with AKT1-E17K compared to patients harboring wild-type AKT1. In vitro experiments also suggested higher HK2 levels and its activity in AKT1-E17K cells. Treatment with the conventional drug of choice AZD5363 (a pan AKT inhibitor) enhanced cell death and diminished HK2 levels in AKT1 mutants. Given the role of AKT phosphorylation in eliciting inflammatory responses, we observed increased levels of inflammatory mediators (IL-1ß, IL6, IL8, and TLR4) in AKT1-E17K cells compared to AKT1-WT cells. Treatment with AKT or HK2 inhibitors dampened the heightened levels of inflammatory markers in AKT1-E17K cells. As AKT and HK2 regulates redox homeostasis, diminished ROS generation concomitant with increased levels of NF-E2- related factor 2 (Nrf2) and superoxide dismutase 1 (SOD1) were observed in AKT1-E17K cells. Increased sensitivity of AKT1-E17K cells to AZD5363 in the presence of HK2 inhibitor Lonidamine was reversed upon treatment with ROS inhibitor NAC. By affecting metabolism, inflammation, and redox homeostasis AKT1-E17K confers a survival advantage in meningioma cells. Our findings suggest that targeting AKT-HK2 cross-talk to induce ROS-dependent cell death could be exploited as novel therapeutic approach in meningiomas.


Meningeal Neoplasms , Meningioma , Humans , Gain of Function Mutation , Hexokinase/genetics , Hexokinase/metabolism , Meningeal Neoplasms/genetics , Meningioma/genetics , Oxidative Stress/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species
19.
Sci Bull (Beijing) ; 69(9): 1263-1274, 2024 May 15.
Article En | MEDLINE | ID: mdl-38418300

Metabolic reprogramming is a mechanism by which cancer cells alter their metabolic patterns to promote cell proliferation and growth, thereby enabling their resistance to external stress. 2-Deoxy-D-glucose (2DG) can eliminate their energy source by inhibiting glucose glycolysis, leading to cancer cell death through starvation. However, a compensatory increase in mitochondrial metabolism inhibits its efficacy. Herein, we propose a synergistic approach that combines photodynamic therapy (PDT) with starvation therapy to address this challenge. To monitor the nanodrugs and determine the optimal triggering time for precise tumor therapy, a multifunctional nano-platform comprising lanthanide-doped nanoparticle (LnNP) cores was constructed and combined with mesoporous silicon shells loaded with 2DG and photosensitizer chlorin e6 (Ce6) in the mesopore channels. Under 980 nm near-infrared light excitation, the downshifted 1550 nm fluorescence signal in the second near-infrared (NIR-II, 1000-1700 nm) window from the LnNPs was used to monitor the accumulation of nanomaterials in tumors. Furthermore, upconverted 650 nm light excited the Ce6 to generate singlet oxygen for PDT, which damaged mitochondrial function and enhanced the efficacy of 2DG by inhibiting hexokinase 2 and lactate dehydrogenase A expressions. As a result, glucose metabolism reprogramming was inhibited and the efficiency of starvation therapy was significantly enhanced. Overall, the proposed NIR-II bioimaging-guided PDT-augmented starvation therapy, which simultaneously inhibited glycolysis and mitochondria, facilitated the effects of a cancer theranostic system.


Chlorophyllides , Glucose , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Photochemotherapy/methods , Humans , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use , Glucose/metabolism , Nanoparticles/therapeutic use , Deoxyglucose/pharmacology , Mice , Infrared Rays , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/therapy , Neoplasms/diagnostic imaging , Hexokinase/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Glycolysis/drug effects , Metabolic Reprogramming
20.
Nat Commun ; 15(1): 1314, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38351096

Immune checkpoint blockade (ICB) has shown considerable promise for treating various malignancies, but only a subset of cancer patients benefit from immune checkpoint inhibitor therapy because of immune evasion and immune-related adverse events (irAEs). The mechanisms underlying how tumor cells regulate immune cell response remain largely unknown. Here we show that hexokinase domain component 1 (HKDC1) promotes tumor immune evasion in a CD8+ T cell-dependent manner by activating STAT1/PD-L1 in tumor cells. Mechanistically, HKDC1 binds to and presents cytosolic STAT1 to IFNGR1 on the plasma membrane following IFNγ-stimulation by associating with cytoskeleton protein ACTA2, resulting in STAT1 phosphorylation and nuclear translocation. HKDC1 inhibition in combination with anti-PD-1/PD-L1 enhances in vivo T cell antitumor response in liver cancer models in male mice. Clinical sample analysis indicates a correlation among HKDC1 expression, STAT1 phosphorylation, and survival in patients with hepatocellular carcinoma treated with atezolizumab (anti-PD-L1). These findings reveal a role for HKDC1 in regulating immune evasion by coupling cytoskeleton with STAT1 activation, providing a potential combination strategy to enhance antitumor immune responses.


Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Male , Mice , B7-H1 Antigen , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cytoskeleton/metabolism , Hexokinase/metabolism , Immune Evasion , Liver Neoplasms/pathology , STAT1 Transcription Factor/metabolism , Tumor Escape
...